Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Clin Oncol ; 15(1): 89-114, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38292658

RESUMO

BACKGROUND: A recently hypothesized cause of cell death called disulfidptosis has been linked to the expansion, emigration, and vascular rebuilding of cancer cells. Cancer can be treated by targeting the pathways that trigger cell death. AIM: To discover the long non-coding RNA of the disulfidaptosis-related lncRNAs (DRLs), prognosis clinical survival, and treat patients with colorectal cancer with medications. METHODS: Initially, we queried the Cancer Genome Atlas database to collect transcriptome, clinical, and genetic mutation data for colorectal cancer (CRC). Training and testing sets for CRC patient transcriptome data were generated randomly. Key long non-coding RNAs (lncRNAs) related to DRLs were then identified and evaluated using a least absolute shrinkage and selection operator procedure, as well as univariate and multivariate Cox regression models. A prognostic model was then created after risk scoring. Also, Immune infiltration analysis, immune checkpoint analysis, and medication susceptibility analysis were used to investigate the causes of the different prognoses between high and low risk groups. Finally, we validated the differential expression and biomarker potential of risk-predictive lncRNAs through induction using both NCM460 and HT-29 cell lines, as well as a disulfidptosis model. RESULTS: In this work, eight significant lncRNAs linked to disulfidptosis were found. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of differentially expressed genes between high- and low-risk groups from the prognostic model showed a close relationship with the immune response as well as significant enrichment in neutrophil extracellular trap formation and the IL-17 signaling pathway. Furthermore, significant immune cell variations between the high-risk and low-risk groups were seen, as well as a higher incidence of immunological escape risk in the high-risk group. Finally, Epirubicin, bortezomib, teniposide, and BMS-754807 were shown to have the lowest sensitivity among the four immunotherapy drugs. CONCLUSION: Our findings emphasizes the role of disulfidptosis in regulating tumor development, therapeutic response, and patient survival in CRC patients. For the clinical treatment of CRC, these important LncRNAs could serve as viable therapeutic targets.

2.
Ecotoxicol Environ Saf ; 259: 115029, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216867

RESUMO

Nitrogen (N) deposition has increased dramatically in recent decades, which is significantly affecting the invasion and growth of exotic plants. Whether N deposition leads to invasive alien species becoming competitively superior to native species remains to be investigated. In the present study, an invasive species (Oenothera biennis L.) and three co-occurring native species (Artemisia argyi Lévl. et Vant., Inula japonica Thunb., and Chenopodium album L.) were grown in a monoculture (two seedlings of the same species) or mixed culture (one seedling of O. biennis and one seedling of a native species) under three levels of N deposition (0, 6, and 12 g∙m-2∙year-1). Nitrogen deposition had no effect on soil N and P content. Nitrogen deposition enhanced the crown area, total biomass, leaf chlorophyll content, and leaf N to phosphorus ratio in both invasive and native plants. Oenothera biennis dominated competition with C. album and I. japonica due to its high resource acquisition and absorption capacity (greater height, canopy, leaf chlorophyll a to chlorophyll b ratio, leaf chlorophyll content, leaf N content, leaf mass fraction, and lower root-to-shoot ratio). However, the native species A. argyi exhibited competitive ability similar to O. biennis. Thus, invasive species are not always superior competitors of native species; this depends on the identities of the native species. High N deposition enhanced the competitive dominance of O. biennis over I. japonica by 15.45% but did not alter the competitive dominance of O. biennis over C. album. Furthermore, N deposition did not affect the dominance of O. biennis or A. argyi. Therefore, the species composition of the native community must be considered when preparing to resist future biological invasions. Our study contributes to a better understanding of the invasion mechanisms of alien species under N-loading conditions.


Assuntos
Nitrogênio , Plantas , Clorofila A , Plântula , Clorofila , Espécies Introduzidas , Solo
3.
Front Plant Sci ; 14: 1144511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025129

RESUMO

Biological invasions and soil salinization have become increasingly severe environmental problems under global change due to sea-level rise and poor soil management. Invasive species can often outcompete native species, but few studies focus on whether invasive alien species are always superior competitors under increasing stressors. We grew an invasive grass species, Oenothera biennis L., and three native grass species (Artemisia argyi Lévl. et Vant., Chenopodium album L., and Inula japonica Thunb.) as a monoculture (two seedlings of each species) or mixture (one seedling of O. biennis and one native species seedling) under three levels of salt treatments (0, 1, and 2 g/kg NaCl) in a greenhouse. We found that invasive O. biennis exhibited greater performance over native C. album and I. japonica, but lower performance compared to A. argyi, regardless of the soil salinity. However, salinity did not significantly affect the relative dominance of O. biennis. Interspecific competition enhanced the growth of O. biennis and inhibited the growth of I. japonica. Although O. biennis seedlings always had growth dominance over C. album seedlings, C. album was not affected by O. biennis at any salt level. At high salt levels, O. biennis inhibited the growth of A. argyi, while A. argyi did not affect the growth of O. biennis. Salt alleviated the competitive effect of O. biennis on I. japonica but did not mitigate the competition between O. biennis and the other two native species. Therefore, our study provides evidence for a better understanding of the invasive mechanisms of alien species under various salinity conditions.

4.
Phytomedicine ; 111: 154658, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36706698

RESUMO

BACKGROUND: Wumei Wan (WMW) has been used to address digestive disorder for centuries in traditional Chinese medicine. Previous studies have demonstrated its anti-colitis efficacy, but the underlying mechanism of its action remains to be further clarified. PURPOSE: To investigate the underlying mechanisms of WMW in the treatment of chronic ulcerative colitis (UC) through network pharmacology and experimental validation. METHODS: Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform were used to identify the ingredients and potential targets of WMW. The microarray gene data GSE75214 datasets from GEO database was used to define UC-associated targets. Cytoscape3.7.2 was employed to construct the protein-protein interaction (PPI) network and compounds-disease targets network. GO enrichment analysis and KEGG pathway analysis were performed by R software for functional annotation. UPLC-TOF-MS/MS method was used to quantitatively analyze the active ingredients of WMW. For experimental validation, three cycles of 2% dextran sulfate sodium salt (DSS) were used to construct chronic colitis model. The hub targets and signal pathway were detected by qPCR, ELISA, western blotting , immunohistochemical and immunofluorescence. RESULTS: Through network analysis, 104 active ingredients were obtained from WMW, and 47 of these ingredients had potential targets for UC. A total of 41 potential targets of WMW and 13 hub targets were identified. KEGG analysis showed that WMW involved in advanced glycation end products-receptor of advanced glycation end products (AGE-RAGE) signaling pathway. Taxifolin, rutaecarpine, kaempferol, quercetin, and luteolin of WMW were the more highly predictive components related to the AGE-RAGE signaling pathway. In vivo validation, WMW improved DSS-induced colitis, reduced the expression of inflammatory cytokines and chemokines. Notably, it significantly decreased the mRNA expression of Spp1, Serpine1, Mmp2, Mmp9, Ptgs2, Nos2, Kdr and Icam1, which were associated with angiogenesis. In addition, we confirmed WMW inhibited RAGE expression and diminished DSS-induced epithelial barrier alterations CONCLUSION: Our results initially demonstrated the effective components and the strong anti-angiogenic activity of WMW in experimental chronic colitis. Sufficient evidence of the satisfactory anti-colitis action of WMW was verified in this study, suggesting its potential as a quite prospective agent for the therapy of UC.


Assuntos
Colite Ulcerativa , Colite , Medicamentos de Ervas Chinesas , Humanos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Inflamação/tratamento farmacológico , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Farmacologia em Rede , Estudos Prospectivos , Transdução de Sinais , Espectrometria de Massas em Tandem
5.
Mitochondrial DNA B Resour ; 6(2): 363-364, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33659678

RESUMO

Stephanandra incisa is a typical discontinuous distribution species in the eastern part of the subspecies with a high economic and ecological value. In this study, we have obtained the complete chloroplast genome of S. incisa using high-throughput sequencing. The chloroplast genome length was 159,583 bp, the AT content was 63.7%, while the large single copy and a small single copy area were 88,018 bp and 18,817 bp, respectively. It contains 131 genes, including 86 protein-coding genes, 37 transfer RNA genes, and eight ribosomal RNA genes. A maximum-likelihood phylogenetic tree supported the fact that S. incisa is closely related to Pyracantha fortuneana and Amelanchier sinica, which is consistent with the taxonomic view.

6.
Int J Mol Sci ; 20(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652538

RESUMO

Heat shock transcription factors (Hsfs) are a class of important transcription factors (TFs) which play crucial roles in the protection of plants from damages caused by various abiotic stresses. The present study aimed to characterize the Hsf genes in carnation (Dianthus caryophyllus), which is one of the four largest cut flowers worldwide. In this study, a total of 17 non-redundant Hsf genes were identified from the D. caryophyllus genome. Specifically, the gene structure and motifs of each DcaHsf were comprehensively analyzed. Phylogenetic analysis of the DcaHsf family distinctly separated nine class A, seven class B, and one class C Hsf genes. Additionally, promoter analysis indicated that the DcaHsf promoters included various cis-acting elements that were related to stress, hormones, as well as development processes. In addition, cis-elements, such as STRE, MYB, and ABRE binding sites, were identified in the promoters of most DcaHsf genes. According to qRT-PCR data, the expression of DcaHsfs varied in eight tissues and six flowering stages and among different DcaHsfs, even in the same class. Moreover, DcaHsf-A1, A2a, A9a, B2a, B3a revealed their putative involvement in the early flowering stages. The time-course expression profile of DcaHsf during stress responses illustrated that all the DcaHsfs were heat- and drought-responsive, and almost all DcaHsfs were down-regulated by cold, salt, and abscisic acid (ABA) stress. Meanwhile, DcaHsf-A3, A7, A9a, A9b, B3a were primarily up-regulated at an early stage in response to salicylic acid (SA). This study provides an overview of the Hsf gene family in D. caryophyllus and a basis for the breeding of stress-resistant carnation.


Assuntos
Dianthus/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Dianthus/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Família Multigênica , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo
7.
Mitochondrial DNA B Resour ; 4(2): 2254-2255, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-33365498

RESUMO

Camellia japonica is an evergreen tree species with high ornamental value. The complete C. japonica cp genome is 156,606 bp in length and contains a small single-copy region (18,415 bp) and a large single copy ( 86,257 bp) region - separated by a pair of the inverted repeat regions (51,934 bp ). The overall GC content of the C. japonica cp genome is 37.31%. We identified 128 genes in this genome, including 91 protein-coding genes, 29 transfer RNA genes, and 8 ribosomal RNA genes. The maximum-likelihood phylogenetic analysis revealed that C. japonica is closely related to Camellia oleifera.

8.
Mitochondrial DNA B Resour ; 5(1): 81-82, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33366432

RESUMO

Styrax japonicus is a shrub with high economic values. Here, complete chloroplast (cp) genomes were reported using high-throughput Illumina sequencing. The size of the S. japonicus chloroplast genome is 157,940 bp long, with an average AT content of 63.05%, containing a pair of inverted repeats of 24,047 bp, separated by a large single copy and a small single copy region of 87,562 bp and 22,284 bp, respectively. It contains 125 genes, including79 protein-coding genes, 37 transfer RNA genes, and eight ribosomal RNA genes. A maximum-likelihood phylogenetic tree supported the fact that the chloroplast genome of S. japonicus is closely related to that of Symplocos paniculate.

9.
Ying Yong Sheng Tai Xue Bao ; 29(4): 1125-1132, 2018 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-29726220

RESUMO

Camellia japonica (Naidong), a Tertiary relict species with abundant morphological characteristics and special genetic characteristics, is the northernmost distributed population of C. japonica. The seedlings of Naidong were subjected to two light regimes (65%, 15% of full sunlight, respectively) and three water supply regimes (75%, 50% and 25% of field capacity, respectively). Our objectives were to reveal the ecophysiological responses of Naidong under different drought and shade conditions and to examine the four existing hypotheses explaining the responses of Naidong seedlings to the interactions of shade and drought. The results showed that 15% of full sunlight reduced the growth of seedlings. Compared with those under 65% of full sunlight condition, the net photosynthetic rate, transpiration rate and chlorophyll content of seedlings under 15% of full sunlight condition were decreased by 63.3%, 82.9% and 17.5%, respectively. In contrast, the specific leaf area, leaf water content and maximal quantum yield under 15% of full sunlight condition were enhanced by 60.3%, 8.3% and 6.4%, respectively. Drought limited the growth of seedlings,decreased their height and basal diameter. The net photosynthetic rate, transpiration rate and stomatal conductance of seedlings significantly decreased with the increases of drought stress, with their minimum values being 0.83 µmol·m-2·s-1, 0.30 µmol·m-2·s-1 and 11.56 mmol·m-2·s-1, respectively. With the increases of drought stress, the contents of peroxidase and catalase showed a general declining trend, but the contents of malondialdehyde and proline significantly increased. The treatment 15% of full sunlight alleviated the negative effects of drought on Naidong seedlings, which supported the above-ground facilitation hypothesis. Our results indicated that Naidong seedlings could respond and acclimate to environmental changes through various mechanisms, and the seedlings might normally grow under broad ranges of light and water stresses. In addition, providing ideal light and water conditions for the Naidong seedlings could facilitate its application in gardening.


Assuntos
Camellia/fisiologia , Secas , Fotossíntese , Aclimatação , Clorofila , Folhas de Planta , Plântula , Luz Solar , Água
10.
Chem Pharm Bull (Tokyo) ; 66(4): 410-415, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29415905

RESUMO

The anti-inflammatory effects of (R)-2-(1H-Imidazol-1-yl) ethyl-3-(1H-indol-3-yl)-2-(2-p-tolylacetamido)propanamide (RH-1402), a previous designed small molecule Gastrin releasing peptide (GRP) antagonist were evaluated in adjuvant-induced arthritic model of rats, and the inhibitory effect on neutrophil migration induced by GRP was determined by a transwell system experiment in vitro. The arthritis was induced by injection of Complete Freund's Adjuvant (CFA) containing 10 mg/mL of heat killed mycobacterium into the left hind footpad. Experimental rats were randomly divided into 6 groups, including control, placebo, positive control group, RH-1402 of low/middle/high dose group. Disease incidence and severity was evaluated through scoring of the paw edema and histologic features of joint synovial. Blood of all experimental rats was collected for interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) cytokine levels. A transwell system was used to investigate whether RH-1402 would inhibit neutrophils migrating up a gradient of GRP in vitro. RH-1402 (5 and 10 mg/kg) significantly decreased adjuvant induced increased arthritis index during the administration period (days 14-20). Significant inhibition of joint synovial histological features can be found in the RH-1402 treated group, including alleviated Hyperplasia, Inflammatory of infiltration and activation of pannus formation. It also suppressed TNF-α and IL-1ß level. Five and 10 mg/kg of RH-1402 significantly inhibited the effect of GRP on neutrophil migration with a dose dependent relationship. These findings indicate that RH-1402 have potential protective anti-inflammatory effects on experimental models of arthritis.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Artrite Experimental/tratamento farmacológico , Receptores da Bombesina/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Adjuvante de Freund/administração & dosagem , Ratos , Ratos Sprague-Dawley , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química
11.
Ying Yong Sheng Tai Xue Bao ; 27(9): 2815-2822, 2016 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-29732843

RESUMO

In this study, the adaptability of leaf shape, structure and stomata characteristics of Camellia sasanqua to temperature variation in natural process was investigated by field morphological observation, conventional paraffin section and scanning electron microscopy methods. The results showed that, as the temperature decreased, the leaf color changed from green to dark green, toge-ther with white and purple spots on the leaves. The relative conductivity and the percentage of wi-thered leaves increased initially and then decreased during this period. The highest percentages of relative conductivity and withered leaves in March 2015 were 56.0% and 25.4%, respectively. Different leaf tissue structure indexes, including middle vein thickness, leaf thickness, upper and lower epidermis thickness, upper and lower cuticle thickness, palisade tissue thickness, spongy tissue thickness, ratio of palisade tissue to spongy tissue, cell tense ratio and vein protuberant degree were also determined during the natural temperature change from September 2014 to April 2015. Gradually, these parameters increased initially and then decreased with the decrease of temperature except spongy ratio, which showed the opposite trend. These indicators above changed significantly in different months. Stomata length and width were not significantly changed in October 2014, December 2014 and March 2015, while the percentage of completely closed stomata was higher in March 2015, compared with other months. Taken together, we proposed that the improved adaptability of cold tolerance of C. sasanqua relies on the changes of leaf structure and stomatal closure.


Assuntos
Adaptação Fisiológica , Camellia/fisiologia , Temperatura Baixa , Folhas de Planta/anatomia & histologia , Estômatos de Plantas
12.
Ying Yong Sheng Tai Xue Bao ; 27(10): 3114-3122, 2016 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-29726135

RESUMO

The leaves of four evergreen plants, i.e., Fatsia japonica, Nerium indicum, Mahonia bealei and Acer cinnamomifolium were used as the experimental materials. By measuring the changes of in vitro leaf in soluble sugar, soluble protein, free proline, POD activity, chlorophyll content and relative electrolytic conductivity under aritificial simulated low temperature, combining the measurements of SPAD, leaf surface features and anatomical changes in organizational structure in the process of natural wintering, the cold resistance of four evergreen tree species was evaluated comprehensively. The results showed that in the process of artificial low temperature stress, the chlorophyll content of the leaves of four evergreen species decreased, the content of soluble protein pea-ked at -20 ℃, and the soluble sugar, free proline, POD activity and relative electrolytic conductivity showed an overall upward trend. The semilethal temperatures of four species were -8.0, -13.4, -19.4 and -14.8 ℃, respectively. During the winter, the leaf SPAD of the four species changed markedly, reflecting that the change of relative chlorophyll content was related to the change of temperature. Meanwhile, the leaf thickness, cutin layer thickness, stockade tissue thickness and tightness of four species increased and the plasmolysis occurred thereafter. Also the content of starch grains and calcium oxalate cluster crystal increased. The typical stomatal pits and the intensive non-glandular trichome within the pits of N. indicum and the sclerenchyma of M. Bealei could improve the cold resistance of plants to some extent. In addition, the phenomena like the breakage of wax layer in leaf surface, the fracture of epidermal hair and the deformation of palisade tissue indicated that plants were damaged to a certain extent by low temperature.


Assuntos
Temperatura Baixa , Folhas de Planta/fisiologia , Árvores/fisiologia , Acer/fisiologia , Araliaceae/fisiologia , Clorofila/análise , Mahonia/fisiologia , Nerium/fisiologia , Folhas de Planta/química , Estações do Ano
13.
Ying Yong Sheng Tai Xue Bao ; 18(8): 1709-14, 2007 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-17974233

RESUMO

By using LI-6400 infrared gas analyzer, this paper studied the diurnal and seasonal variations of the photosynthetic rate of main arbor species (Populus alba x P. berolinensis, Salix matsudana, Ulmus pumila, Robinia pseudoacacia and Prunus davidiana) in Shenyang urban area. The correlations between net photosynthetic rate and environmental factors (photosynthetic active radiation, temperature, and stomatal conductance) were assessed by multivariate regression analysis, and related equations were constructed. The results showed that for test arbor species, the diurnal variation of photosynthetic rate mainly presented a single peak curve, and the seasonal variation was in the order of summer > autumn > spring. The major factors affecting the photosynthetic rate were photosynthetic active radiation, stomatal conductance, and intercellular CO2 concentration.


Assuntos
Fotossíntese/fisiologia , Populus/fisiologia , Salix/fisiologia , Ulmus/fisiologia , China , Cidades , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...